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Abstract: Observations are inevitably contaminated by measurement uncertainty, which is a predominant 

source of uncertainty in some cases. In reliability analysis, probabilistic models are typically fitted to 

measurements without considering this uncertainty. Hence, this paper intends to explore the effect of this 

simplification on structural reliability and to provide recommendations on its treatment. Statistical and 

interval-based approaches are used to quantify and propagate measurement uncertainty. They are critically 

compared by analyzing ground snow measurements that are often affected by large measurement uncertainty. 

It is propagated through the mechanical model of a generic structure to investigate its effect on reliability. 

Parametric studies facilitate to analyze the effect of key parameters, such as measurement uncertainty, 

coefficient of variation of ground snow load, and distribution type. The interval analysis is performed as a 

hybrid interval-probabilistic analysis. Measurements are represented as intervals and probabilistic model is 

then fitted to them. Thus, snow parameters and the reliability index are also interval variables; other random 

variables are described by standard probabilistic distributions. Implementation of the statistical approach is 

based on the frequentist paradigm where the contamination mechanism is expressed in terms of random 

variables. This approach allows decoupling measurement uncertainty from a variable of interest. The results 

indicate that measurement uncertainty may lead to significant (order of magnitude) underestimation of failure 

probability and should be taken into account in reliability analysis. If more information than interval endpoints 

is available, a statistical approach is recommended; otherwise the interval representation should be used. 

Ranges of the key parameters are identified where measurement uncertainty should be considered. For 

practical applications, the lower interval bound and predictive reliability index are recommended as point 

estimates using interval and statistical analysis, respectively. The point estimates should be accompanied by 

uncertainty intervals, which convey valuable information about the credibility of results. Although general 

recommendations are given, treatment of measurement uncertainty should be handled on a case-specific basis. 
 

Keywords: measurement uncertainty, snow, structural reliability, interval arithmetic, maximum likelihood, 

deconvolution 

 

 

 

1. Introduction 

 

 MOTIVATION 

 

Models accounting for all uncertainties are of a considerable interest in structural reliability since these are 

the bases of design specifications, hence impacting the building and structure stocks of large regions. Snow 
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is particularly important for light-weight structures for which it is typically the governing action. To our 

knowledge, the effect of snow measurement uncertainty on structural reliability has not yet been studied and 

other probabilistic models are treated similarly in civil engineering. For instance, neither the joint European 

research on snow actions (Sanpaolesi et al., 1998) or the JCSS Probabilistic Model Code (JCSS, 2002) 

provides any information on the treatment of measurement uncertainty and its effect. Therefore, the aim of 

this paper is to explore the effect of this simplification on structural reliability and to provide 

recommendations on its treatment. 

Observations are inevitably contaminated by measurement uncertainty (MU) which is a predominant 

source of uncertainty in some cases. Uncertainty is understood here as the lack of knowledge (epistemic) and 

natural variability (aleatory)1 not including known systematic error that are assumed to be adjusted. In 

reliability analysis, probabilistic models are typically fitted to measurements without considering their 

uncertainty. This is the case for snow measurements where often only the snow depth is measured and the 

applied techniques makes the derived loads highly uncertain, for example, the uncertainty range can reach 

50% of the measured depth [based on a personal correspondence with a meteorologist]. The World 

Meteorological Organization conducted a comprehensive comparative study on the then available solid 

precipitation measurement techniques and experimentally confirmed that measurements should be adjusted 

for wetting loss, evaporation loss, and wind induced undercatch (Goodison et al., 1998). They found that the 

snow catch ratio of the four most widely used gauges range from 20% to 70% at 6 m/s wind speed. Even for 

automated systems, measurement error in solid precipitation can vary from 20% to 50% due to undercatch in 

windy conditions (Rasmussen et al., 2011). Although these mainly contribute to systematic error they indicate 

uncertainties in snow measurements as these errors cannot be exactly corrected. For instance coefficient of 

determination (R2) values vary from 0.40 to 0.80 for the fitted wind correction equations at certain sites; these 

are associated with about 10% standard error in catchment ratio. Additional uncertainty may be introduced if 

no site specific auxiliary data, e.g. wind speed measurements, are available (Goodison et al., 1998). These 

issues are not limited to snow measurements but valid for all evidence based models ‒ that is for every model 

‒ although their importance may vary. 

 

 ADOPTED APPROACHES 

 

We assume that measurements are corrected for known systematic errors. Additionally, the following model 

is assumed to describe the connection between observed (Y) and real, true, physical (X) values, that is the 

variable of interest: 

 (true, real2) 
( , )h X E

X Y  (observed) (1) 

The h(X, E) function represents the mathematical relationship between the true and observed random 

variables referred hereinafter as reality-observation link. E covers the unknown processes contributing to 

measurement uncertainty. The recommended probabilistic models – typically distributions – in the literature 

are almost exclusively given for the true variable and not for the observed, potentially contaminated one. 

Possible reasons for this are that: 

 The contamination is commonly site- and measuring technique-dependent, thus no general 

recommendations can be given for the distribution of Y. 

                                                      
1 This division is subjective as conditioned on the selected “model universe”. 
2 Herein we tacitly assume the existence of some objective reality independent of the observer. 
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 The model type is often selected based on theoretical arguments considering the physical phenomena 

generating X, e.g. normal distribution if X is the result of summation; lognormal if X is the product of 

random variables; extreme value distribution if X is related to extremes. 

 Structural reliability is ultimately dependent on X and not on Y, although we are limited to access only Y. 

The last point is especially important since structures are subjected to actions coming from X and not from 

Y; the latter is affected by our ignorance or inability to make accurate measurements (epistemic uncertainty). 

In a broader sense this also applies for X, but for now we remain in the commonly accepted model universe 

of engineering and treat X as a random variable. If the distribution type of X is known or agreed, then the 

reality-observation link uniquely determines the distribution of Y. Hence, if any measurement uncertainty is 

present, its distribution type almost certainly differs from the distribution of X. This is prevalently neglected 

while fitting distributions in civil engineering – Y is assumed to be distributed as X. This simplification is 

acceptable in some practical cases. This method is termed hereinafter as Approach 1 while it is referred to as 

Approach 2 when the difference between distributions is appreciated: 

Approach 1 Use the probabilistic model of true random variable (X) and treat the observations – 

contaminated by measurement uncertainty – (y) as the realizations of this model: y ~ X. 

Approach 2 Differentiate between the distribution of true and observed random variables. Within this, the 

following two sub-approaches are considered: 

Approach 2a Representation of measurement uncertainty with intervals at the level of observations and 

propagating them to the derived parameters via interval analysis. As interval representation by nature 

contains no information about the reality-observation link, the decontamination of observations is not 

possible. 

Approach 2b Representation of measurement uncertainty with a probability distribution. Use a 

mathematical model (h(X, E)) to describe the connection between measurement uncertainty (E), true 

phenomenon (X), and observed phenomenon (Y). Based on this model and on observations (y), infer the 

parameters of the true random variable (X). These issues are referred to as measurement error problems 

in the literature (Kondlo, 2010). 

Additional assumptions for all considered approaches: 

 y = {y1, y2,...yn} and x = {x1, x2,...xn} each are independent, identically distributed realizations; y is 

contaminated by measurement uncertainty. 

 The realizations of the true phenomenon (x) and the measurement uncertainty () are mutually 

independent; 

 The true phenomenon (X) follows arbitrary, but known distribution type; 

 Only for Approach 2b: the measurement uncertainty (E) follows arbitrary, but known distribution type, 

and the reality-observation link is also known. 
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Figure 1. Interval representation of measurement uncertainty (black) on a sorted random sample (red). The sample is generated 

from Q1 with properties given in Table 1 and CoVQ1 = 0.2. 

 

2. Uncertainty Representation and Propagation 

 

 INTERVAL ANALYSIS 

 

Interval representation is one possible approach to quantify uncertainty in an observed variable: the width of 

the interval expresses our uncertainty (Figure 1). In this concept the true value is certainly within the interval 

but we know nothing about how likely it takes a particular value from that. In other words no probability 

distribution function is assumed over the interval, thus it expresses greater ignorance than probability 

distributions can (Huber, 2010). 

The basic objective of interval analysis is to propagate the interval uncertainty of input variables to the 

outputs. Its main challenge is to calculate the interval bounds without overestimating them. This typically 

occurs if floating point computations are simply replaced by intervals and caused by interval dependency 

(Moore et al., 2009). Since the operators are typically not known explicitly and are non-monotonic, special 

algorithms are needed to obtain sufficiently narrow approximate interval bounds. 

Interval analysis is traditionally used to model floating point truncation error in numerical computations; 

however, it is also successfully applied to various civil engineering issues, for instance, reliability of structures 

(Qiu et al., 2008) and systems (Qiu et al., 2007). Rao et al. (2015) analyzed the effect of incorrect fitting on 

trusses and frames using mixed interval finite element formulation, using intervals to model fabrication errors. 

Muhanna et al. (2015) demonstrated the feasibility of non-linear interval finite element analysis for beam-

column structures. In their study geometric, material and load uncertainties are modeled with intervals. 

In this paper the general definition of interval variables is used and constrained numerical optimization is 

applied to find the interval endpoints. This is motivated by the readily available optimization algorithms, and 

its feasibility due to the analyzed simple, computationally cheap examples. For computationally demanding 

models more efficient algorithms are available (Zhang et al., 2010; Alibrandi and Koch, 2015; Muhanna et 

al., 2015). 
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Intervals in this paper are defined by midpoint and radius (r), the midpoint is taken as the observed value, 

yi, see Figure 1. In this approach the true value is assumed to be certainly within the interval given the 

modeling assumptions are valid. 

 

 STATISTICAL ANALYSIS 

 

An alternative approach to represent measurement uncertainty is statistical by means of probability 

distributions. The likelihood function depends on the reality-observation link (Eq.(1)). This connection is also 

uncertain, but for simplicity, known relationship is assumed here and a possible treatment of this uncertainty 

is discussed in Section 4. Algebra of random variables can be used to obtain the likelihood function reflecting 

the distribution of involved random variables and the reality-observation link: 

    ,, | ( , ) | ,
X E i i X E

fL h x θ x εθ θ θ . (2) 

In Approach 1, this means no additional complication because the observations are assumed to be distributed 

as the true random variable since the reality-observation link is neglected. However, in Approach 2b the 

likelihood function should be constructed to remove the effect of measurement uncertainty (E) on the variable 

of interest (X). 

The measurement error problem arises in many areas where only the contaminated values are attainable 

to the observer but the interest lays in the inference of true, uncontaminated values. Among others, these areas 

include astronomy, econometrics, biometrics, medical statistics, and image reconstruction (Stefanski, 2000; 

Koen and Kondlo, 2009; Meister, 2009). A straightforward solution is to construct the likelihood function 

(Eq.(2)) and to infer the parameters of the variable of interest (X) by a selected method. To the authors 

knowledge this approach has not been applied in civil engineering yet. 

Maximum likelihood method is used herein to infer the parameters in the statistical formulation of the 

measurement uncertainty problem. This method is a widespread technique that favors parameters at which 

the data are most likely generated by the assumed model. It is a typically asymptotically efficient and 

consistent method (Casella and Berger, 2001). 

Additive and multiplicative reality-observation links are considered. For the additive relationship: Y = X 

+ E, the density function of the sum of two independent, continuous random variables is obtained by 

convolution: 

          d
Y X E X E

f y f f y f y x f x x





      . (3) 

The integral can be efficiently solved by utilizing Fourier transformation since afterwards it reduces to a 

point-wise multiplication. Here, the fast-Fourier transformation is used to accomplish this task. For the 

multiplicative relationship: Y = X·E, the density function of the product of two independent, continuous 

random variables is obtained by computing the following integral: 

    
1

d
Y X E

y
f y f x f x

x x





   
 
 
 

 . (4) 

This can be efficiently solved by Mellin transformation but here the integral is directly calculated due to the 

small computational burden. 
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Sampling variability (parameter estimation uncertainty) is accounted for by using the predictive reliability 

index (Der Kiureghian, 1989): 

 

 
2 2

mean median

1 std 1 1.483 mad

B B

B B

  
  

 (5) 

Where B is the posterior reliability index, std and mad are the standard deviation and median absolute 

deviation of B, respectively. The formulation with median and mad are used in this paper, as that is more 

robust to outliers. Eq.(5) is an approximation as it is valid only for Normal distributed B. Additionally, the 

statistics are estimated from repeated analyses, and no Bayesian formulation of the reliability problem is used, 

however that was used to derive the formula. For this study it is deemed sufficiently accurate to indicate 

tendencies and to identify critical cases. 

 

 
Figure 2. Illustration of probability distribution representation of measurement uncertainty (black) on a sorted random sample (red). 

The sample is generated from Q1 with properties given in Table 1and CVQ1 = 0.2. 

 

 

 

3. Example: Reliability of a Generic Structure 

 

 MODEL DESCRIPTION 

 

The reliability of a simple structural member is analyzed using a generic limit state function: 

  50
( )g R G Q  X  (6) 

It represents a structure subjected to permanent (G) and variable (Q50) actions, where the subscript 50 

indicates 50-year reference period (common design working life). The probabilistic model of involved 

random variables are based on the recommendations of JCSS (2001) and summarized in Table 1. For 

simplicity only the variable action is assumed to be affected by measurement uncertainty; it could be easily 

extended to more variables. Coefficient of variations 0.2, 0.4 for Q1 represent annual snow maxima of 
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mountains, highlands, while 0.6 characterizes lowlands in the Carpathian Region. The Lognormal model for 

snow maxima is typically adopted in the USA (ASCE, 2010), while the Gumbel model is widespread in 

Europe (Sanpaolesi et al., 1998; JCSS, 2001). The Normal and Gumbel distributions are light-tailed while 

the Lognormal is heavy-tailed. The adopted distributions and parameter ranges cover also other variable 

actions such as wind and thermal actions, thus the results can be readily generalized. 

 
Table 1: Probabilistic models. 

Variable name (symbol) Distribution Mean 
Coefficient of variation 

(CV) 

Resistance (R) Lognormal * 0.10 

Permanent action (G) Normal 8 0.10 

Variable action (Q1)† Normal, Lognormal, Gumbel 10 [0.20, 0.40, 0.60] 

* set to reach t = 3.8 for each combination of inputs. 

† the specified parameters are used to generate 50-element sample and the parameters of the model used in 

reliability analysis are inferred from it. 

 

The annual maxima are assumed to be independent: 

    
50

50 1F q F q   (7) 

where F(.) is the cumulative distribution function. 

 

 INTERVAL AND RELIABILITY ANALYSIS 

 

To model the effect of measurement uncertainty, 50 random observations are generated from Q1, these are 

treated as observed (Y) values as the reality-observation link by definition is unknown in interval 

representation (Figure 3). Then intervals are centered at observations and various interval radiuses are 

considered. Using these interval variables, the distribution of Q1 is fitted by the method of moments that is a 

widely used approach in civil engineering (Sanpaolesi et al., 1998) and was proved to be robust e.g. for 

modeling hydrological extremes (Madsen et al., 1997). The hybrid interval-probabilistic reliability problem 

is solved using optimization and first order reliability method (FORM). An outcome of the analysis is an 

interval reliability index. 

 

 
Figure 3. Algorithm of analyzing the effect of interval measurement uncertainty on reliability. 
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The upper bound of it is irrelevant from safety point of view and the lower bound is recommended for 

practical applications (Qiu et al., 2007). This is due to the special nature of intervals and how they represent 

uncertainty: the real value can be anything within the interval but one cannot assume that all points are equally 

likely (principle of indifference) at least because the consequence of specific values are not equal. Hence we 

chose the recommended, careful engineering approach and use the lower endpoint of the reliability index 

interval as representative value. 

 

3.2.1. Full and approximate propagation of interval uncertainty 

As measurement uncertainty is expressed at the level of individual observations its full propagation yields to 

two distinct 50-dimensional constrained optimization problems that can be computationally demanding if 

each iteration step involves fitting a distribution function and solving a reliability problem. The computational 

burden can be considerably lessened by a two-step approximate technique where first the distribution 

parameters are fitted to the interval observations. Then only the interval representation of distribution 

parameters are used in further reliability analysis. Thus, the optimization with reliability analysis is reduced 

to a two-dimensional search space. Moreover, our experience show that the optimum is at the bounds so as it 

can be found by considering only the possible permutations of the parameter bounds. 

The accuracy of full and two-step approximate uncertainty propagations are compared using Gumbel 

distributed Q1. The results in terms of reliability indices are presented in Figure 4. The interval uncertainty is 

expressed as the ratio of interval radius and mean of annual maxima (Q1). 0-10% range is covered and it is 

assumed that all observations are contaminated by the same radius. For each coefficient of variation the mean 

of the resistance is set to reach the 3.8 target reliability level. This is performed by considering no 

measurement uncertainty (r = 0) and using the parameters given in Table 1, thus sampling variability has no 

effect. The calculated upper and lower reliability index endpoints are presented in the plots with solid and 

dashed lines for two-step and full propagations, respectively. Figure 3 shows also the reliability index 

obtained by Approach 1. This is illustrated with a dotted line and is not affected by the assumed measurement 

uncertainty interval. 

 

 
Figure 4. Reliability index intervals as the function of normalized measurement uncertainty radius (r) with full and approximate 

propagation of interval uncertainty. 

 

The plots show that the approximate technique slightly overestimates the accurate (full) reliability 

intervals, the largest difference is observed for CVQ1 = 0.2 with large measurement uncertainty. Since in 
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general the overestimation of the approximate technique is small, it is used in all further analysis. The 

sensitivity factor of the 50-year reference period maxima (Q50) is also displayed on the plots. It corresponds 

to a model without uncertainty in measurement and parameters. The decreasing interval range of  with 

increasing CVQ1 is explained by the decreasing contribution of interval uncertainty to the full uncertainty of 

Q1, i.e. the aleatory uncertainty becomes dominating. Figure 5 illustrates this shrinkage of uncertainty interval 

by comparing the transformed cumulative distribution functions with different coefficient of variations. The 

plots correspond to 50 particular random realizations; the same pattern is observed for other sets of random 

realizations. 

 

 
Figure 5. Illustration of the shrinkage of uncertainty interval with increasing coefficient of variation but constant measurement 

uncertainty interval. 

 

3.2.2. Effect on reliability index and required resistance 

Equation (3) is solved for Normal, Lognormal and Gumbel distributed variable action (Q1) using the two-step 

approximation technique. The results are summarized in Figure 6; they have the same rationale as is given 

for Figure 4. The light gray lines show the opening reliability interval with increasing measurement 

uncertainty for 20 random samples, each with 50 realizations. These are indicative of the effect of sampling 

variability: in this case this is entirely parameter estimation uncertainty due to the finite sample size. The 

results show that sampling variability – with 50 realizations that is typical for maxima model of climatic 

actions – has significant effect on reliability. It is dominating over measurement uncertainty for small interval 

radiuses and comparable for larger values. The thick black lines are the median of the 20 sample sets. The 

reliability index without considering measurement uncertainty can be seen at the common starting point of 

the lower and upper bound lines. The difference of this value and the lower bound is of interest here as it 

indicates the extent of the non-conservative neglect of measurement uncertainty. The difference is deemed 

significant if it is larger than 0.5, this level is indicated by a dashed horizontal line while the significant range 

with a red half line. With the selected target reliability level, this corresponds to more than six-fold increase 

in failure probability. 
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Figure 6. Reliability index intervals as the function of the normalized measurement uncertainty radius (r/Q1). The gray lines 

represent 20 random samples, indicating sampling variability. The black lines are the median lower and upper interval endpoints of 

the reliability index. The red half line indicates the range where the lower endpoint of the reliability interval is significantly lower 

(0.5) than the reliability calculated without measurement uncertainty (r = 0). 

 

The results suggest that moderate ±4% measurement uncertainty can lead to significant reduction of 

reliability level for mountains and highlands represented by CVQ1 = 0.2-0.4. For the largest considered value 

of CVQ1 = 0.6, the Gumbel model does not reach the limiting value. This indicates that for lowlands even a 

quite large ±10% measurement uncertainty has no practically significant effect. The reliability interval ranges 

indicate that even a small ±2% measurement uncertainty can lead to an order of magnitude uncertainty in the 

failure probability, e.g. Lognormal distribution with CVQ1 = 0.2. For larger measurement uncertainties, the 

width of the reliability intervals can be larger than 2.0; the widths are quite considerable for large CVQ1 = 0.6 

models too. 

Measurement uncertainty thus seems to have a marked effect on structural reliability. The practical 

question then arises: what are its implications on design and how it should be accounted? To examine this, 

we calculated the mean resistance required to reach the target reliability with the lower bound of the reliability 

interval (Approach 2a). Then this value is compared to the mean resistance required to reach the target 

reliability without explicit consideration of measurement uncertainty (Approach 1). The ratios of the mean 

values (with interval MU/without explicit MU) are illustrated in Figure 7. These indicate how large 

adjustment might be needed in representative resistance values to meet target reliability in the presence of 

measurement uncertainty. The plots are structured and have the same rationale as Figure 6. The ratio is 

deemed practically significant if it is larger than 1.1. This level is indicated by a dashed horizontal line while 
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the significant range with a red half line. The small effect of sampling variability for Normal distribution is 

likely due to the small sensitivity factor of Q50. On the contrary, sampling variability is quite considerable for 

Lognormal distribution. The selected threshold is reached for all the distributions. The Lognormal model 

shows opposite trend; this might be attributed to its heavy tail. For this distribution the 1.1 threshold is reached 

at about 4% radius and the ratio can be over 1.4 for larger radiuses that is a huge potential adjustment. The 

Gumbel distribution illustrates decreasing ratio with increasing coefficient of variation. For CVQ1 = 0.2 

(mountains), moderate ±4% measurement uncertainty can lead to significant mean resistance ratio. For the 

lowlands (CVQ1 = 0.6), the ratio is over the selected threshold only for excessive measurement uncertainty 

±9% which suggests that measurement uncertainty can be neglected for large values of CVQ1. 

 

 
Figure 7. Mean resistance ratio for the variable action with and without measurement uncertainty as the function of the normalized 

measurement uncertainty radius (r/Q1). The red half line indicates the significant range where the ratio is larger than 1.1. 

 

 STATISTICAL AND RELIABILITY ANALYSIS  

 

This section presents the statistical approach to quantify and propagate measurement uncertainty 

(Approach 2b). To model the effect of measurement uncertainty, 50 random observations are generated from 

Q1 and treated as true (X) values. Then by using the assumed reality-observation link, it is contaminated by 

measurement uncertainty. This is generated from a known, independent distribution (E). The algorithm is 

outlined in Figure 8. Additive and multiplicative reality-observation links are assumed and the measurement 

uncertainty is taken as normally distributed with zero mean (unbiased). After the contamination of data, the 
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information about the parameters of the underlying generating models – with the exception of the zero mean 

of measurement uncertainty – is disregarded and the maximum likelihood method is applied to decouple true 

values from measurement uncertainty. Finally, the model of decontaminated observations is used in reliability 

analysis. The sampling variability is again indicated by 20 samples and taken into account in an approximate 

manner through the predictive reliability index (Eq.(5)). The median and mean absolute deviation are 

calculated. 

 

 
Figure 8. Algorithm of analyzing the effect of measurement uncertainty on reliability using statistical technique. 

 

3.3.1. Decontamination of observations 

To illustrate the technique and the effect of decontamination, random realizations are generated from Gumbel 

distribution – with parameters given in Table 1 – and contaminated by measurement uncertainty (Figure 8). 

First, additive reality-observation relationship is assumed and Approach 1 and Approach 2b are used to infer 

the model parameters. The maximum likelihood method is used to obtain point estimates and the delta method 

is applied to construct 90% confidence intervals to illustrate parameter estimation uncertainty (Coles, 2001). 

The results for three cases of Gumbel distribution and two cases of measurement uncertainty with varying 

standard deviation are discussed only. The realizations and the fitted models are shown in Figure 9. It 

comprises return value–return period plots transformed to Gumbel space where the Gumbel distribution 

appears as a straight line. Though the plots are corresponding to a particular set of realizations, they convey 

reliably the trends and expected differences: (i) Approach 1 typically overestimates the fractiles thus leading 

to lower reliability level and being conservative; (ii) the difference between models increases with increasing 

return period. Due to the small sample size, the difference is affected by large sampling variability. 

The calculations are repeated with multiplicative measurement uncertainty (Figure 10). The results 

correspond well with those obtained for the additive format; wider confidence intervals of Approach 2b 

compared with Approach 1 are observed. This is due to the larger model space where the same sample size 

allows less certain inference. This effect is less pronounced for the additive model. 

For both models, Approach 1 is inherently biased since it is not using the correct likelihood function, while 

Approach 2b asymptotically converges to the true model. Thus, in the long run – from theoretical point of 

view – Approach 2b is better, however Approach 1 seems to be generally conservative for the considered 

reality-observation links. This latter aspect is analyzed in more detail in the following section focusing on 

reliability index as a quantity of practical interest. 
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Figure 9. Gumbel distributions fitted to random realizations contaminated by additive measurement uncertainty using Approach 1 

and Approach 2b. The point estimates (dashed lines) are accompanied by 90% confidence intervals (dotted lines). 
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Figure 10. Gumbel distributions fitted to random realizations contaminated by multiplicative measurement uncertainty using 

Approach 1 and Approach 2b. The point estimates (dashed lines) are accompanied by 90% confidence intervals (dotted lines). 

 

3.3.2. Effect on reliability index 

The effect of measurement uncertainty on reliability index is analyzed for the additive relationship 

considering Normal, Lognormal and Gumbel distributed true values and with coefficient of variation ranging 

from 0.2 to 0.6. The measurement uncertainty has normal distribution with known zero mean and varying 

standard deviation. Consistently with the interval analysis in Section 3.2, the mean value of the resistance is 

determined to reach the target reliability without measurement uncertainty and parameter estimation 

uncertainty. Then the algorithm presented in Figure 8 is applied to generate contaminated observations, to 

decontaminate them, and to calculate the reliability index using the inferred parameters. The calculations are 

repeated for 20 samples with sample size of 50. The results in terms of reliability indices are shown in Figure 

11 and in Figure 12. Grey and light blue solid lines are representing the 20 samples, and the corresponding 
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thick solid and dashed lines are the median and predictive reliability indices, respectively. The difference 

between these latter two lines expresses the effect of parameter estimation uncertainty. For Normal 

distribution, this effect is small compared to Lognormal and Gumbel for which it is increasing with increasing 

standard deviation of measurement uncertainty. For Approach 2b it is typically larger than Approach 1 as the 

larger model space allows less certain inference with the same sample size. In case of Lognormal and Gumbel 

models, the ratio of the predictive and median failure probabilities can be as large as an order of magnitude 

or larger. Additionally, the plots show that the reliability index can considerably be overestimated when 

parameter estimation uncertainty is neglected. The salient large scatter of Approach 2b might be partially 

attributed to the unstable maximum likelihood estimators for small samples (Hosking et al., 1985; Martins 

and Stedinger, 2000). 

 

 
Figure 11. Reliability indices as the function of the normalized standard deviation of measurement uncertainty (E/Q1). The thick 

solid lines are the median of the reliability indices while the thick dashed lines are the approximate predictive reliability indices. 
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Figure 12. Reliability indices as the function of the normalized standard deviation of measurement uncertainty (E/Q1). The thick 

solid lines are the median of the reliability indices while the thick dashed lines are the approximate predictive reliability indices. 

 

Comparing Approach 1 with Approach 2b for Normal and Gumbel distributions, the former approach 

yields to systematically lower reliability indices. The opposite trend observed for Lognormal distribution 

might be attributed to its heavy-tail. For Normal distribution, Approach 1 seems to be overly conservative, 

the median is well below the target reliability level.  

For all distributions, Approach 1 is reasonably conservative with the exception of Lognormal distribution 

and coefficient of variation of 0.6. However, even in this case the predictive reliability index corrects the 

overestimation. Though for Normal distribution it is too conservative, the currently prevalent Approach 1 

appears to be safely applicable to measurement uncertainty problems in case of additive reality-observation 

relationship. Approach 2b is sound from theoretical point of view, however its median overestimates 

reliability level, thus the predictive reliability index is to be used to avoid underestimation of failure 

probability. Its larger parameter estimation uncertainty can lead large reduction in reliability index for small 

sample sizes. 
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4. Discussion 

 

One can distinguish two components of measurement uncertainty: the reality-observation link and the nature 

of the contamination E. The three approaches considered here differ in how they treat these two components. 

The present prevalent approach (Approach 1) neglects both components, thus entirely ignores the possibility 

that the real values are greater or smaller than the observed due to measurement uncertainty. 

The interval approach (Approach 2a) expresses full ignorance in respect of reality-observation link and 

represents measurement uncertainty with intervals. Therefore, no decoupling of true values from 

measurement uncertainty is possible. Intervals should be used with caution because by definition values 

outside of the interval are impossible. This is an assumption that is rarely met in civil engineering. 

Measurement uncertainty is often described on the basis of expert judgment and wide intervals are applied to 

almost surely capture real, unobserved values. 

The statistical approach (Approach 2b) requires the knowledge of the reality-observation link and 

represents measurement uncertainty with distribution function. This is the only approach that can 

decontaminate the observations and can directly infer the variable of interest, true variable. This is important 

since structural reliability is dependent on the true variable. The statistical and interval analysis based 

approaches are conceptually different, thus they are only comparable on that level but not quantitatively. 

Their uncertainty representation is inherently distinct, thus there is no equivalency between interval and 

distribution based representations. 

Additionally, it must be emphasized that another type of uncertainty – statistical uncertainty in parameter 

estimation and selection of distribution function – often needs to be taken into account in reliability analysis 

as it may be even more important as measurement uncertainty investigated here (Rózsás and Sýkora, 2015a; 

2015b). Bayesian paradigm is a natural choice to incorporate this uncertainty, consequently that is 

recommended for practical applications. For example, in real-life situations, the reality-observation link 

cannot be established with certainty. Yet, this uncertainty can be captured by using multiple models and 

averaging them with respect their goodness of describing the data, this can be achieved for example by 

Bayesian model averaging (Hoeting et al., 1999). 

Although this study is limited by the considered distribution types, reality-observation functions, and 

parameter range, it is believed to cover many practically relevant random variables. The presented approach 

and algorithms can be easily used for other distribution types and measurement error structure. An additional 

limitation of this study is that measurement uncertainty is considered only for the dominant variable action. 

However, it is anticipated that for other random variables the effect is smaller due to their typically smaller 

sensitivity factor. Moreover, measurement uncertainty is much smaller for other than climatic actions such as 

resistance and permanent actions. Furthermore, the effect of sample size should be analyzed in later works. 

It is believed that the outcomes would be similar for sample sizes ranging from 20 to couple of hundreds, 

which cover the majority of cases in civil engineering. More data would allow more certain model 

identification. 

 

 

 

5. Conclusions 

 

The current practice in probabilistic engineering treats observed data contaminated by measurement 

uncertainty as realizations of the true distribution, thus neglecting the contamination mechanism. Statistical 
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and interval-based analyses are thus conducted to investigate the effect of this simplification on structural 

reliability. Extensive parametric analyses – based on 50 realizations, which is a typical length of records for 

climatic actions – reveal that: 

If interval representation of measurement uncertainty is used: 

 Sampling variability (parameter estimation uncertainty) has significant effect on reliability: it is dominant 

over measurement uncertainty for small interval radiuses and comparable for large radiuses. 

 For mountains and highlands, moderate ±4% measurement uncertainty – relative to value of an observed 

variable – can lead to significant reduction of reliability level. For lowlands, even a large ±10% 

measurement uncertainty has no significant effect. An effect is deemed significant if it yields to greater 

than six fold increase in failure probability compared with Approach 1 (neglect of measurement 

uncertainty. 

 Reliability interval ranges indicate that a small ±2% measurement uncertainty can lead to reduction of 

0.6 in reliability index. For larger measurement uncertainties, the width of the reliability intervals can be 

larger than 2.0. 

 The effect of measurement uncertainty is more pronounced for low variability random variables where 

its contribution to the total uncertainty increases. 

 Parameter ranges where Approach 1 often overestimates the reliability index are identified.  

If statistical (distribution function) representation of measurement uncertainty is used: 

 It is demonstrated that the statistical approach can be used to decontaminate the observations, thus to 

access the variable of interest. 

 The ratio of the predictive and median failure probabilities can be as large as an order of magnitude or 

larger (~30 for Lognormal distribution). 

 If parameter estimation uncertainty is disregarded, the reliability index can be considerably 

overestimated. 

 For all distributions with additive measurement uncertainty, Approach 1 is reasonably conservative in 

most cases. 

 

Practical recommendations: 

 Figure 6 and Figure 7 can be used to identify cases when Approach 1 significantly overestimates 

reliability index. In such cases and when no or very limited information on measurement uncertainty is 

available, then interval analysis could be used, considering the lower bound of the reliability interval. 

 If the reality-observation link is known then the statistical approach is recommended. For small and 

moderate sample sizes (<100), the predictive reliability index is recommended. For additive measurement 

uncertainty, Approach 1 is conservative. 

 Point estimates such as median reliability index should be accompanied by uncertainty intervals to 

indicate the credibility of results. 

 For ground snow extremes at lowlands, Approach 1 provides a reasonable approximation, thus the effect 

of measurement uncertainty can be neglected. Otherwise more advanced analysis is recommended. 

 

Assessment of measurement uncertainty should be region and case-specific accounting for measuring 

techniques, and applied correction equations, thus involvement of meteorologists, analysts or other experts is 

beneficial. Moreover, the selected approach to propagate measurement uncertainty should always be based 

on the particular issue in question, acknowledging “the degree of precision to which the nature of the subject 

admits”. 
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